KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Musterlösungen zur Klausur

Robotik I: Einführung in die Robotik

am 16. März 2018, 14:00 – 15:00 Uhr

Name:	Vorname:		Matrikelnur	nmer:
Denavit Hartenberg		5	$\frac{\pi}{2}$	
Aufgabe 1			von	4 Punkten
Aufgabe 2			von	6 Punkten
Aufgabe 3			von	8 Punkten
Aufgabe 4			von	7 Punkten
Aufgabe 5			von	6 Punkten
Aufgabe 6			von	8 Punkten
Aufgabe 7			von	6 Punkten
Gesamtpunktzahl:			45 v	on 45 Punkten
		Note:	1,0	

2 P.

Aufgabe 1 Rotationen

1 P. 1. RPY-Winkel von R:

Rotation um die y-Achse: $\alpha = 0, \gamma = 0$

$$R_y(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix} = \begin{pmatrix} 0.7 & 0 & 0.7 \\ 0 & 1 & 0 \\ -0.7 & 0 & 0.7 \end{pmatrix}$$

$$\sin(\beta) = \cos(\beta) = 0.7 \Rightarrow \beta = \frac{\pi}{4}$$

RPY-Winkel: $\alpha=0, \beta=\frac{\pi}{4}, \gamma=0$

2. Homogene Transformationsmatrix $W^{KS}T_{OKS}$:

1 P.

$${}^{WKS}T_{OKS} = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.7 & 0 & 0.7 & 300 \\ 0 & 1 & 0 & 200 \\ -0.7 & 0 & 0.7 & 100 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. Transformation von p in das Weltkoordinatensystem WKS:

 ${}^{WKS}T_{OKS} \cdot p_{OKS} = \begin{pmatrix} 0.7 & 0 & 0.7 & 300 \\ 0 & 1 & 0 & 200 \\ -0.7 & 0 & 0.7 & 100 \end{pmatrix} \cdot \begin{pmatrix} -200 \\ 100 \\ 100 \end{pmatrix} = \begin{pmatrix} -140 + 70 + 300 \\ 100 + 200 \\ 140 + 70 + 100 \end{pmatrix} = \begin{pmatrix} 230 \\ 300 \\ 310 \end{pmatrix}$

Aufgabe 2 Kinematik

1. DH-Parameter des Roboters:

4 P.

Gelenk	$ heta_i \ [^\circ]$	$d_i \ [mm]$	$a_i \ [mm]$	$lpha_i$ [°]
G1	-90	d_1	0	0
G2	$ heta_{2}$	40	160	0
G3	θ_3	0	160	0
G4	θ_{4}	-120	0	0

2. Arbeitsraum:

1 P.

Zylinder (oder auch Hohlzylinder)

3. DH-Parameter ungleich 0::

1 P.

 $\alpha_{5,6} \neq 0$ (Drehung um x-Achse)

Alternative Lösungen:

- \bullet α_i
- α, θ

Aufgabe 3 Regelung

1. Vervollständigen Sie die Tabelle:

Regelkreisgröße	Name	
Block 1	Korrekture in richtung/Regelglied/Regler/Controller	
Block 2	Strecke/Plant	
w	Führungsgröße/Sollwert/Setpoint/Input	
x_d	Regeldifferenz/Differenzgröße/Error	
y	Stellgröße	
x	Regelgröße/Ausgangsgröße/Output	
r	Rückführgröße	
z	Störgröße /Disturbance	

2. Vervollständigen Sie das Blockschaltbild:

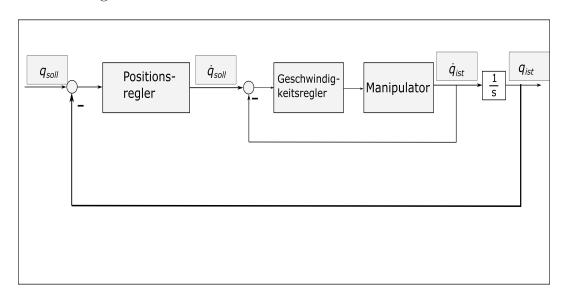


Abbildung 1: Nicht vollständiger Positionsregelungskreis.

- (a) Geschwindigkeitsregler: \dot{q}_{soll} , \dot{q}_{ist}
- (b) Positionsregler: q_{soll} , Positionsregler , Rückführung , Subtraktion -
- 3. Gleichungen für den PI-Regler im Zeit und Frequenzbereich:

•
$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$$

•
$$U(s) = (K_p + K_i \cdot \frac{1}{s}) \cdot E(s) = K_p \cdot E(s) + K_i \cdot \frac{1}{s} \cdot E(s)$$

3 P.

1 P.

2 P.

2 P.

Aufgabe 4 Bewegungsplanung

1. A^* -Schritte:

Schritt 1: $O = \{7\}$ $C = \{\}$

$$g(7) = 0$$

- Expandierter Knoten: 7

- Neues Closed Set: $C = \{7\}$

- Neues Open Set:

Treates open sec.				
Knoten	Kosten (g)	Heuristik (h)		
1	1	$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$		
6	8	$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$		
8	8	$\sqrt{2^2 + 3^2} = \sqrt{13}$		
13	1	$\sqrt{2^2 + 3^2} = \sqrt{13}$		

Schritt 2: – Expandierter Knoten: 13

- Neues Closed Set: $C = \{7, 13\}$

- Neues Open Set:

Knoten	Kosten (g)
1	1
6	8
8	8
12	2
14	9
19	2

2. Manhattan-Distanz zulässige Heuristik in \mathbb{R}^2 :

Nein, sie überschätzt Kosten bei diagonalen Bewegungen.

3. Heuristik für Dijkstra's Algorithmus:

$$h(x) = 0$$

4. Zwei Eigenschaften bei zulässiger Heuristik:

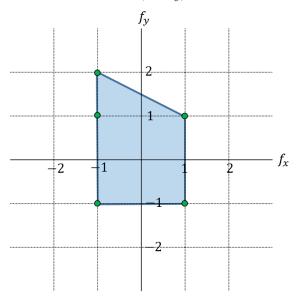
1) Optimal: Die gefundene Lösung hat minimale Kosten.

2) Optimal effizient: Kein anderer optimaler Algorithmus, der die gleiche Heuristik verwendet, besucht weniger Knoten als A^* .

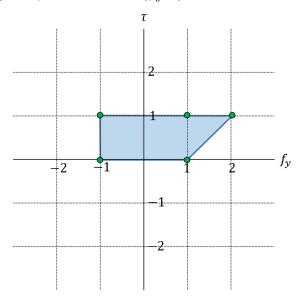
2 P.

2 P.

1 P.


1 P.

1 P.


Aufgabe 5 Greifplanung

1. Projektion des GWS:

(a) Projektion auf die (f_x, f_y) -Ebene:

(b) Projektion auf die (f_y, τ) -Ebene:

2. Kraftgeschlossenheit:

Der Griff ist nicht kraftgeschlossen

Zwei alternative Begründungen möglich:

- ε -Metrik ist 0, da minimaler Abstand zum Ursprung 0 ist (siehe Projektion auf (f_y, τ) -Ebene).
- Die Wrenches spannen nicht den gesamten \mathbb{R}^3 auf. Ein Drehmoment $\tau < 0$ kann nicht als positive Linearkombination erzeugt werden $(pos(w) \neq \mathbb{R}^3)$.

4 P.

2 P.

Aufgabe 6 Bildverarbeitung

1. Projektion des Szenenpunktes:

2 P.

$$\begin{pmatrix} u \\ v \end{pmatrix} = \frac{f}{z} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{20}{200} \begin{pmatrix} 100 \\ 50 \end{pmatrix} = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$

Alternative Lösung (anderer Rechenweg, exakteres Ergebnis):

$$\begin{pmatrix} u \\ v \end{pmatrix} = \frac{22}{200} \begin{pmatrix} 100 \\ 50 \end{pmatrix} = \begin{pmatrix} 11 \\ 5.5 \end{pmatrix}$$

2. Ergebnis der Mittelwert-Filterung:

3 P.

$$B' = \begin{pmatrix} \frac{8}{9} & \frac{4}{3} & \frac{16}{9} & \frac{20}{9} & \frac{24}{9} & \frac{16}{9} \\ \frac{4}{3} & 2 & \frac{24}{9} & \frac{30}{9} & 4 & \frac{24}{9} \\ \frac{4}{3} & 2 & \frac{24}{9} & \frac{30}{9} & 4 & \frac{24}{9} \\ \frac{8}{9} & \frac{4}{3} & \frac{16}{9} & \frac{20}{9} & \frac{24}{9} & \frac{16}{9} \end{pmatrix} \approx \begin{pmatrix} 0.889 & 1.333 & 1.778 & 2.222 & 2.667 & 1.778 \\ 1.333 & 2 & 2.667 & 3.333 & 4 & 2.667 \\ 1.333 & 2 & 2.667 & 3.333 & 4 & 2.667 \\ 0.889 & 1.333 & 1.778 & 2.222 & 2.667 & 1.778 \end{pmatrix}$$

3. Ergebnis der Erosion:

3 P.

$$\begin{pmatrix}
0 & 0 & 0 & 255 \\
0 & 0 & 0 & 255 \\
0 & 0 & 0 & 255 \\
0 & 0 & 0 & 255
\end{pmatrix}$$

Aufgabe 7 Symbolisches Planen

1. Minimale Aktionssequenz:s

3 P.

pickup(A,B)

putdown(A,L2)

pickup(B,C)

putdown(B,A)

pickup(C,L1)

putdown(C,B)

2. Wieso keine negierten Prädikate benötigt?

1 P.

Die Closed World Assumption besagt unter Anderem, dass alle nicht explizit genannten Literale negiert sind.

3. Kann das modfizierte Planungsproblem gelöst werden?

2 P.

Nein, dazu würde ein dritter Ort L3 zur zwischenzeitlichen Ablage benötigt.